An image to illustrate the Postgraduate Diploma in Mathematics
Course type
Diploma
Credits
120

Credits

  • Credits measure the student workload required for the successful completion of a module or qualification.
  • One credit represents about 10 hours of study over the duration of the course.
  • You are awarded credits after you have successfully completed a module.
  • For example, if you study a 60-credit module and successfully pass it, you will be awarded 60 credits.
How long it takes
2 years part-time study
Read more about how long it takes
Study method
Distance learning
Course cost
See Fees and funding
Entry requirements
Find out more about
Entry requirements

Postgraduate Diploma in Mathematics

Course code: E23

This diploma comprises four 30-credit modules from a wide choice. Topics include analytic number theory, calculus of variations and nonlinear ordinary differential equations. Extend your understanding of areas of mathematics applicable to science, engineering and technology. It’s also the first two stages of our postgraduate mathematics programme – you can achieve the MSc in Mathematics by taking a further two 30-credit modules.

  • Extends your understanding of key areas of mathematics, including analytic number theory, advanced calculus and differential equations
  • A wide choice of modules enables you to tailor the course to your needs
  • The opportunity to top up to our MSc in Mathematics in just one more year

This postgraduate diploma is the same as the first two-thirds of MSc in Mathematics (F04). The first half is the same as our Postgraduate Certificate in Mathematics (C90).

Course type
Diploma
Credits
120

Credits

  • Credits measure the student workload required for the successful completion of a module or qualification.
  • One credit represents about 10 hours of study over the duration of the course.
  • You are awarded credits after you have successfully completed a module.
  • For example, if you study a 60-credit module and successfully pass it, you will be awarded 60 credits.
How long it takes
2 years part-time study
Read more about how long it takes
Study method
Distance learning
Course cost
See Fees and funding
Entry requirements
Find out more about
Entry requirements

How to register

Select the module you will study first, read the full description, and follow the instructions to register.

Modules

To gain this qualification, you need 120 credits as follows:

30 credits from:

Modules Credits Next start
Calculus of variations and advanced calculus (M820)

M820 Calculus of Variations and Advanced Calculus covers functionals, Gâteaux differential, Euler–Lagrange equation, First-integral, Noether’s Theorem, Second variation/Jacobi equation and Sturm–Liouville systems.

See full description

Register
30 04 Oct 2025
Analytic number theory I (M823)

This entry-level pure mathematics module introduces several concepts from number theory, including congruences, arithmetical functions and their averages, distributions of primes, quadratic reciprocity and Dirichlet’s theorem.

See full description

Register
30 04 Oct 2025

90 credits from:

Modules Credits Next start
Advanced mathematical methods (M833) 2

This module uses the Maple computing language to teach: perturbation expansions, accelerated convergence, Padé approximations, asymptotic expansions, eigenvalue problems, and Green’s functions.

See full description

Register
30 04 Oct 2025
Calculus of variations and advanced calculus (M820)

M820 Calculus of Variations and Advanced Calculus covers functionals, Gâteaux differential, Euler–Lagrange equation, First-integral, Noether’s Theorem, Second variation/Jacobi equation and Sturm–Liouville systems.

See full description

Register
30 04 Oct 2025
Analytic number theory II (M829) 1

This module covers the second half of Apostol’s Introduction to Analytic Number Theory and proof of the prime number theorem.

See full description

30 No current presentation
Analytic number theory I (M823)

This entry-level pure mathematics module introduces several concepts from number theory, including congruences, arithmetical functions and their averages, distributions of primes, quadratic reciprocity and Dirichlet’s theorem.

See full description

Register
30 04 Oct 2025
Coding theory (M836) 2

This module examines error-detecting and error-correcting codes built on algebraic structures, with associated encoding/decoding procedures and applicability, concluding with elements of cryptography.

See full description

Register
30 04 Oct 2025
Fractal geometry (M835) 2

This module deals with the geometry of fractals, sets that are often very beautiful and contain copies of themselves at many different scales.

See full description

Register
30 04 Oct 2025
Galois theory (M838) 1

This postgraduate mathematics module explores the relationship between groups and fields as described by Galois in the 19th century.

See full description

30 No current presentation
Nonlinear ordinary differential equations (M821) 1

The theory of nonlinear ordinary differential equations is introduced with emphasis on geometrical aspects, approximation schemes and the determination of stability and periodicity of solutions.

See full description

30 No current presentation
Quantum and statistical mechanics of matter (SM880)

This postgraduate module teaches the tools of advanced quantum and statistical mechanics of matter, illustrated using atoms, molecules and exotic states.

See full description

Register
30 04 Oct 2025
Or, subject to the rules about excluded combinations, the discontinued modules M431, M822, M824, M826, M827, M828, M830, M832, M841, M860, M861, PMT600 and PMT601.
1M821, M829 and M838 are available only in even years – the next start is October 2026.
2M833, M835 and M836 are available only in odd years – the next start is October 2025.

You should note that the University’s unique study rule applies to this qualification. This means that you must include at least 40 credits from OU modules that have not been counted in any other OU qualification that has previously been awarded to you.


Learning outcomes, teaching and assessment

The learning outcomes of this qualification are described in four areas:

  • Knowledge and understanding
  • Cognitive skills
  • Practical and professional skills
  • Key skills
Read more detailed information about the learning outcomes.

Credit transfer

For this qualification, we do not allow you to count credit for study you have already done elsewhere.


On completion

On successfully completing this course, we’ll award you our Postgraduate Diploma in Mathematics. You’ll be entitled to use the letters PG Dip Maths (Open) after your name.

Regulations

As a student of The Open University, you should be aware of the content of the qualification-specific regulations below and the academic regulations that are available on our Student Policies and Regulations website. 


We regularly review our curriculum; therefore, the qualification described on this page – including its availability, its structure, and available modules – may change over time. If we make changes to this qualification, we’ll update this page as soon as possible. Once you’ve registered or are studying this qualification, where practicable, we’ll inform you in good time of any upcoming changes. If you’d like to know more about the circumstances in which the University might make changes to the curriculum, see our Academic Regulations or contact us. This description was last updated on 19 March 2024.

You should normally have a minimum of either:

  • a 2:2 honours degree in mathematics or
  • a 2:1 honours degree in a subject with a high mathematical content.

If you don’t have such a qualification, your application will still be considered, but you may be asked to complete an entry test. Non-graduates will not normally be admitted.

Whatever your background, you should assess your suitability by completing our diagnostic quiz.

If you’re new to postgraduate study in mathematics, start with a single module: either the applied mathematics module Calculus of variations and advanced calculus (M820) or the pure mathematics module Analytic number theory I (M823).

How long it takes

Most students study the Postgraduate Diploma in Mathematics part-time, completing 60 credits a year over two years. Typically, this means 20 study hours each week.

You can also complete this qualification in one year if you study all four 30-credit modules concurrently.

When planning your studies, note that some modules are available only in odd or even years.

There’s no time limit to complete the Postgraduate Diploma in Mathematics.

Career relevance

Mathematics postgraduates can be found throughout industry, business and commerce, in the public and private sectors. Employers value the intellectual rigour and reasoning skills that mathematics students can acquire, their familiarity with numerical and symbolic thinking and the analytic approach to problem-solving which is their hallmark.

There are a variety of reasons for studying mathematics at postgraduate level. You may want a postgraduate qualification in order to distinguish yourself from an increasingly large graduate population. You may find that your undergraduate mathematical knowledge is becoming insufficient for your career requirements, especially if you are hoping to specialise in one of the more mathematical areas, which are becoming more sought after by employers. Or you may want to move to a PhD in Mathematics. The extent of opportunities is vast and mathematics postgraduates are equipped with skills and knowledge required for jobs in fields such as finance, education, engineering, science and business, as well as mathematics and mathematical science research.

Careers and Employability Services have more information on how OU study can improve your employability.

Request your prospectus

Our prospectuses help you choose your course, understand what it's like to be an OU student and register for study.

Request prospectus

Back to top